Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.405
Filtrar
1.
Carbohydr Polym ; 327: 121635, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171654

RESUMEN

The migration of fibroblasts and endothelial cells is a critical determinant of wound-healing outcomes for skin injuries. Here, hyaluronic acid-tyramine (HAT) and thiolated glycol chitosan (TGC) conjugates were combined with copper-doped bioglass (ACuBG) nanoparticles to build a novel type of multi-crosslinked hydrogel for stimulating the migration of cells, and thus, expediting wound healing. The optimally devised HAT/TGC/ACuBG gels had markedly improved strength and stiffness compared to the gels built from either HAT or TGC while showing sufficient elasticity, which contributes to stimulating the migration of fibroblasts. The sustainable release of silicon and copper ions from the gels was found to jointly induce the migration of human umbilical vein endothelial cells. The results based on mouse full-thickness skin defects demonstrated that they were able to fully restore the skin defects with formation of complete appendages within two weeks, suggesting their promising potency for use in expediting wound healing.


Asunto(s)
Quitosano , Nanopartículas , Ratones , Animales , Humanos , Hidrogeles/farmacología , Cobre/farmacología , Ácido Hialurónico , Células Endoteliales , Tiramina/farmacología , Cicatrización de Heridas
2.
J Asian Nat Prod Res ; 26(2): 237-247, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37812065

RESUMEN

Three new phenylpropanoid glycosides, piperpubelide (1), 1-propionyl-3-hydroxy-phenyl-4-O-ß-D-glucopyranoside (2), and 1-propionyl-4-hydroxy-phenyl-3-O-ß-D-glucopyranoside (3), a new tyramine-type alkamide, puberulumine L (4), together with thirteen known compounds (5-17) were isolated from Piper puberulum (Benth.) Maxim. Their structures were elucidated by analysis of spectroscopic data involving NMR, IR, UV, and HRESIMS data. Calculated and experimental ECD was used to confirm the configuration of compound 1. Compounds 14, 16, and 17 exhibited relatively positive DPPH radical scavenging activities, with corresponding EC50 of 10.23, 24.12, and 21.83 µM, respectively. In addition, compound 5 inhibited LPS-induced NO production in BV-2 microglia with an IC50 value of 18.05 µM.


Asunto(s)
Glucósidos , Piper , Glucósidos/farmacología , Glucósidos/química , Piper/química , Tiramina/farmacología , Tiramina/química , Estructura Molecular , Glicósidos/farmacología , Glicósidos/química
3.
Int J Biol Macromol ; 259(Pt 2): 128843, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104684

RESUMEN

Hydrogels are receiving increasing attention for their use in 3D cell culture, tissue engineering, and bioprinting applications. Each application places specific mechanical and biological demands on these hydrogels. We developed a hydrogel toolbox based on enzymatically crosslinkable polysaccharides via tyramine (TA) moieties, allowing for rapid and tunable crosslinking with well-defined stiffness and high cell viability. Including gelatin modified with TA moieties (Gel-TA) improved the hydrogels' biological properties; 3 T3 fibroblasts and HUVECs attached to and proliferated on the enriched hydrogels at minute Gel-TA concentrations, in contrast to bare or unmodified gelatin-enriched hydrogels. Moreover, we were able to switch HUVECs from a quiescent to a migratory phenotype simply by altering the ligand concentration, demonstrating the potential to easily control cell fate. In encapsulation studies, Gel-TA significantly improved the metabolic activity of 3 T3 fibroblasts in soft hydrogels. Furthermore, we showed rapid migration and network formation in Gel-TA enriched hydrogels in contrast to a non-migratory behavior in non-enriched polysaccharide hydrogels. Finally, low hydrogel density significantly improves tissue response in vivo with large infiltration and low fibrotic reaction. Further development by adding ECM proteins, peptides, and growth factor adhesion sites will lead to a toolbox for hydrogels tailored toward their desired application.


Asunto(s)
Gelatina , Tiramina , Tiramina/farmacología , Tiramina/química , Gelatina/farmacología , Gelatina/química , Ácido Hialurónico/farmacología , Ácido Hialurónico/química , Dextranos , Hidrogeles/farmacología , Hidrogeles/química , Ingeniería de Tejidos
4.
Biochem Pharmacol ; 218: 115906, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37951366

RESUMEN

Burkholderia cenocepacia is an opportunistic respiratory pathogen of particular relevance to patients with cystic fibrosis (CF), primarily regulating its biological functions and virulence factors through two quorum sensing (QS) systems (CepI/R and CciI/R). The highly persistent incidence of multidrug resistant Burkholderia cenocepacia poses a global threat to public health. In this study, we investigated the effects of tyramine, one biogenic amine, on the QS systems of Burkholderia cenocepacia. Genetic and biochemical analyses revealed that tyramine inhibited the production of N-hexanoyl-homoserine (AHL) signaling molecules (C8-HSL and C6-HSL) by blocking the CepI/R and CciI/R systems. As a result, the inhibition of QS systems leads to reduced production of various virulence factors, such as biofilm formation, extracellular polysaccharides, lipase, and swarming motility. Notably, as a potential quorum sensing inhibitor, tyramine exhibits low toxicity in vivo in Galleria mellonella larvae and is well characterized by Lipinski's five rules. It also shows high gastrointestinal absorption and the ability to cross the blood-brain barrier according to SwissADME database and ProTox-II server. Additionally, tyramine was found to enhance the efficacy of tetracycline in reducing the infectivity of Burkholderia cenocepacia in Galleria mellonella larvae infection model. Therefore, tyramine could be a promising candidate for combination therapy with traditional antimicrobials to improve their effectiveness against Burkholderia cenocepacia.


Asunto(s)
Burkholderia cenocepacia , Humanos , Burkholderia cenocepacia/genética , Percepción de Quorum/genética , Virulencia , Tiramina/farmacología , Antibacterianos/farmacología , Tetraciclina/farmacología , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica
5.
Clin Transl Sci ; 16(10): 2058-2069, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37596819

RESUMEN

The oral tyramine challenge evaluates the safety of novel monoamine oxidase (MAO) inhibitors when taken with tyramine-containing food or drinks. In its current design, it comprises an extensive series of tyramine escalation steps until a blood pressure threshold is met. Due to the high variation in tyramine bioavailability, and thereby in blood pressure effect, this classical design has various limitations, including safety concerns. Based on data from a previously performed tyramine challenge study, the present study explored a reduced new design that escalates up to 400 mg, and evaluates the dose to a tyramine peak plasma concentration of ≥10 ng/mL, instead of a dose up to 800 mg, and to a blood pressure change of ≥30 mm Hg. Tested by trial simulation, the new design proves more efficient than the classical design in terms of better identifying tyramine sensitivity of test and reference treatments and reducing false-positive and false-negative rates in estimating tyramine sensitivity by more than 10-fold. Since it escalates over a lower tyramine dose range, the new design reduces risk to subjects associated with tyramine-induced blood pressure excursions, is less demanding for study participants, and is more efficient. By its focus on tyramine bioavailability as the primary concern for novel MAO inhibitors, the new tyramine challenge study provides better answers in a simplified and safer design compared with the classical design in trial simulation, warranting its use in future clinical studies.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Tiramina , Humanos , Inhibidores de la Monoaminooxidasa/efectos adversos , Tiramina/farmacología , Monoaminooxidasa/farmacología , Presión Sanguínea
6.
Molecules ; 28(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36985809

RESUMEN

Hordenine, a phenethylamine alkaloid, is found in a variety of plants and exhibits a broad array of biological activities and pharmacological properties, including anti-inflammatory and anti-fibrotic effects. However, the efficacy and underlying mechanisms of hordenine in treating ulcerative colitis (UC) remain unclear. To address this, we examined the therapeutic effects of hordenine on dextran sodium sulphate (DSS)-induced UC by comparing disease activity index (DAI), colon length, secretion of inflammatory factors, and degree of colonic histological lesions across diseased mice that were and were not treated with hordenine. We found that hordenine significantly reduced DAI and levels of pro-inflammatory factors, including interleukin (IL)-6, IL-1ß, and tumor necrosis factor alpha (TNF-α), and also alleviated colon tissue oedema, colonic lesions, inflammatory cells infiltration and decreased the number of goblet cells. Moreover, in vitro experiments showed that hordenine protected intestinal epithelial barrier function by increasing the expression of tight junction proteins including ZO-1 and occludin, while also promoting the healing of intestinal mucosa. Using immunohistochemistry and western blotting, we demonstrated that hordenine reduced the expression of sphingosine kinase 1 (SPHK1), sphingosine-1-phosphate receptor 1 (S1PR1), and ras-related C3 botulinum toxin substrate 1 (Rac1), and it inhibited the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in colon tissues. Thus, hordenine appears to be effective in UC treatment owing to pharmacological mechanisms that favor mucosal healing and the inhibition of SPHK-1/S1PR1/STAT3 signaling.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon/metabolismo , Tiramina/farmacología , Antiinflamatorios/farmacología , Interleucina-6/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colitis/tratamiento farmacológico
7.
Biomolecules ; 12(12)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36551221

RESUMEN

Sympathomimetic agents are a group of chemical compounds that are able to activate the sympathetic nervous system either directly via adrenergic receptors or indirectly by increasing endogenous catecholamine levels or mimicking their intracellular signaling pathways. Compounds from this group, both used therapeutically or abused, comprise endogenous catecholamines (such as adrenaline and noradrenaline), synthetic amines (e.g., isoproterenol and dobutamine), trace amines (e.g., tyramine, tryptamine, histamine and octopamine), illicit drugs (e.g., ephedrine, cathinone, and cocaine), or even caffeine and synephrine. In addition to the effects triggered by stimulation of the sympathetic system, the discovery of trace amine associated receptors (TAARs) in humans brought new insights about their sympathomimetic pharmacology and toxicology. Although synthetic sympathomimetic agents are mostly seen as toxic, natural sympathomimetic agents are considered more complacently in the terms of safety in the vision of the lay public. Here, we aim to discuss the pharmacological and mainly toxicological aspects related to sympathomimetic natural agents, in particular of trace amines, compounds derived from plants like ephedra and khat, and finally cocaine. The main purpose of this review is to give a scientific and updated view of those agents and serve as a reminder on the safety issues of natural sympathomimetic agents most used in the community.


Asunto(s)
Cocaína , Simpatomiméticos , Humanos , Simpatomiméticos/farmacología , Norepinefrina , Tiramina/farmacología , Aminas , Cocaína/farmacología
8.
Sci Rep ; 12(1): 20946, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470960

RESUMEN

To compare the behavioral roles of biogenic amines in the males of primitive and advanced eusocial bees, we determined the levels of dopamine- and octopamine-related substances in the brain, and the behavioral effects of these monoamines by drug injection in the primitive eusocial bumble bee, Bombus ignitus. The levels of dopamine and its precursors in the brain peaked at the late pupal stage, but the dopamine peak extended to adult emergence. The tyramine and octopamine levels increased from the mid-pupal to adult stages. The locomotor and flight activities, and light preference increased with age. Injection of octopamine and its receptor antagonist had significant effects on the locomotor and flight activities, whereas dopamine injection did not, indicating that these activities can be regulated by the octopaminergic system. We also determined the dynamics of dopamine-related substances in honey bee (Apis mellifera) drones. The changes in the dopamine level in the brains of honey bee drones exhibited two peaks from the pupal to adult stages, whereas the bumble bee males had only one peak. These are consistent with the behavioral functions of dopamine in honey bee drones and ineffectiveness of dopamine injection at the adult stage in bumble bee males.


Asunto(s)
Dopamina , Octopamina , Masculino , Animales , Abejas , Octopamina/farmacología , Dopamina/farmacología , Aminas Biogénicas , Tiramina/farmacología , Encéfalo
9.
Nutrients ; 14(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956295

RESUMEN

Dietary amines have been the subject of a novel interest in nutrition since the discovery of trace amine-associated receptors (TAARs), especially TAAR-1, which recognizes tyramine, phenethylamine, tryptamine, octopamine, N-methyltyramine (NMT), synephrine, amphetamine and related derivatives. Alongside the psychostimulant properties of TAAR-1 ligands, it is their ephedrine-like action on weight loss that drives their current consumption via dietary supplements advertised for 'fat-burning' properties. Among these trace amines, tyramine has recently been described, at high doses, to exhibit an antilipolytic action and activation of glucose transport in human adipocytes, i.e., effects that are facilitating lipid storage rather than mobilization. Because of its close structural similarity to tyramine, NMT actions on human adipocytes therefore must to be reevaluated. To this aim, we studied the lipolytic and antilipolytic properties of NMT together with its interplay with insulin stimulation of glucose transport along with amine oxidase activities in adipose cells obtained from women undergoing abdominal surgery. NMT activated 2-deoxyglucose uptake when incubated with freshly isolated adipocytes at 0.01-1 mM, reaching one-third of the maximal stimulation by insulin. However, when combined with insulin, NMT limited by half the action of the lipogenic hormone on glucose transport. The NMT-induced stimulation of hexose uptake was sensitive to inhibitors of monoamine oxidases (MAO) and of semicarbazide-sensitive amine oxidase (SSAO), as was the case for tyramine and benzylamine. All three amines inhibited isoprenaline-induced lipolysis to a greater extent than insulin, while they were poorly lipolytic on their own. All three amines-but not isoprenaline-interacted with MAO or SSAO. Due to these multiple effects on human adipocytes, NMT cannot be considered as a direct lipolytic agent, potentially able to improve lipid mobilization and fat oxidation in consumers of NMT-containing dietary supplements.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , p-Hidroxianfetamina , Adipocitos , Amina Oxidasa (conteniendo Cobre)/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Monoaminooxidasa/metabolismo , Tiramina/análogos & derivados , Tiramina/metabolismo , Tiramina/farmacología , p-Hidroxianfetamina/metabolismo , p-Hidroxianfetamina/farmacología
10.
J. physiol. biochem ; 78(2): 543-556, May. 2022.
Artículo en Inglés | IBECS | ID: ibc-215980

RESUMEN

Among the dietary amines present in foods and beverages, tyramine has been widely studied since its excessive ingestion can cause catecholamine release and hypertensive crisis. However, tyramine exerts other actions than depleting nerve endings: it activates subtypes of trace amine associated receptors (TAARs) and is oxidized by monoamine oxidases (MAO). Although we have recently described that tyramine is antilipolytic in human adipocytes, no clear evidence has been reported about its effects on glucose transport in the same cell model, while tyramine mimics various insulin-like effects in rodent fat cells, such as activation of glucose transport, lipogenesis, and adipogenesis. Our aim was therefore to characterize the effects of tyramine on glucose transport in human adipocytes. The uptake of the non-metabolizable analogue 2-deoxyglucose (2-DG) was explored in adipocytes from human subcutaneous abdominal adipose tissue obtained from women undergoing reconstructive surgery. Human insulin used as reference agent multiplied by three times the basal 2-DG uptake. Tyramine was ineffective from 0.01 to 10 µM and stimulatory at 100 µM-1 mM, without reaching the maximal effect of insulin. This partial insulin-like effect was not improved by vanadium and was impaired by MAO-A and MAO-B inhibitors. Contrarily to benzylamine, mainly oxidized by semicarbazide-sensitive amine oxidase (SSAO), tyramine activation of glucose transport was not inhibited by semicarbazide. Tyramine effect was not dependent on the Gi-coupled receptor activation but was impaired by antioxidants and reproduced by hydrogen peroxide. In all, the oxidation of high doses of tyramine, already reported to inhibit lipolysis in human fat cells, also partially mimic another effect of insulin in these cells, the glucose uptake activation. Thus, other MAO substrates are potentially able to modulate carbohydrate metabolism. (AU)


Asunto(s)
Humanos , Femenino , Tiramina/farmacología , Amina Oxidasa (conteniendo Cobre) , Adipocitos/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Monoaminooxidasa
11.
Bioorg Med Chem Lett ; 67: 128746, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35447344

RESUMEN

Monoamine oxidase B (MAO-B) inhibitors are established therapy for Parkinson's disease and act, in part, by blocking the MAO-catalysed metabolism of dopamine in the brain. Two propargylamine-containing MAO-B inhibitors, selegiline [(R)-deprenyl] and rasagiline, are currently used in the clinic for this purpose. These compounds are mechanism-based inactivators and, after oxidative activation, form covalent adducts with the FAD co-factor. An important consideration is that selegiline and rasagiline display specificity for MAO-B over the MAO-A isoform thus reducing the risk of tyramine-induced changes in blood-pressure. In the interest of discovering new propargylamine MAO inhibitors, the present study synthesises racemic N-propargylamine-2-aminotetralin (2-PAT), a compound that may be considered as both a six-membered ring analogue of rasagiline and a semi-rigid N-desmethyl ring-closed analogue of selegiline. The in vitro human MAO inhibition properties of this compound were measured and the results showed that 2-PAT is a 20-fold more potent inhibitor of MAO-A (IC50 = 0.721 µM) compared to MAO-B (IC50 = 14.6 µM). Interestingly, dialysis studies found that 2-PAT is a reversible MAO-A inhibitor, while acting as an inactivator of MAO-B. Since reversible MAO-A inhibitors are much less liable to potentiate tyramine-induced side effects than MAO-A inactivators, it is reasonable to suggest that 2-PAT could be a useful and safe therapeutic agent for disorders such as Parkinson's disease and depression.


Asunto(s)
Enfermedad de Parkinson , Selegilina , Humanos , Indanos/farmacología , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Pargilina/análogos & derivados , Enfermedad de Parkinson/tratamiento farmacológico , Propilaminas , Selegilina/farmacología , Tetrahidronaftalenos , Tiramina/farmacología
12.
Med Sci Sports Exerc ; 54(9): 1417-1427, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35420578

RESUMEN

INTRODUCTION: Regular exercise training reduces arterial blood pressure, but the underlying mechanisms are unclear. Here, we evaluated the potential involvement of pannexin 1, an ATP releasing channel, in the blood pressure-reducing effect of training. METHODS: Middle-age men, 13 normotensive and 14 nonmedicated stage 1 hypertensive, completed 8 wk of intensive aerobic cycle training. Before and after training, blood pressure and changes in leg vascular conductance, induced by femoral arterial infusion of tyramine (induces endogenous noradrenaline release), acetylcholine, or sodium nitroprusside, were measured during control conditions and after acute pannexin 1 inhibition by probenecid. A skeletal muscle biopsy was obtained from the thigh, pre- and posttraining. RESULTS: Exercise training reduced mean systolic and diastolic blood pressure by ~5 ( P = 0.013) and 5 mm Hg ( P < 0.001), respectively, in the hypertensive group only. The reduction in blood pressure was not related to changes in pannexin 1 function because mean arterial blood pressure and tyramine-induced vasoconstriction remain unaltered by pannexin 1 inhibition after training in both groups. After training, pannexin 1 inhibition enhanced leg vascular conductance in the normo- and hypertensive groups at baseline (41.5%, P = 0.0036, and 37.7%, P = 0.024, respectively) and in response to sodium nitroprusside infusion (275%, P = 0.038, and 188%, P = 0.038, respectively). Training did not alter the pannexin 1 protein expression in skeletal muscle. Training enhanced the vasodilator response to acetylcholine infusion and increased the expression of microvascular function-relevant proteins. CONCLUSIONS: The exercise training-induced lowering of arterial blood pressure in nonmedicated hypertensive men does not involve an altered function of pannexin 1.


Asunto(s)
Hipertensión , Vasodilatación , Acetilcolina/farmacología , Presión Arterial , Hipertensión Esencial , Ejercicio Físico/fisiología , Humanos , Masculino , Persona de Mediana Edad , Nitroprusiato/farmacología , Tiramina/farmacología , Vasodilatación/fisiología
13.
Hypertension ; 79(5): 1132-1143, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35291811

RESUMEN

BACKGROUND: In preclinical models, the pannexin-1 channel has been shown to be involved in blood pressure regulation through an effect on peripheral vascular resistance. Pannexin-1 releases ATP, which can activate constrictive purinergic receptors on the smooth muscle cells. Pannexin-1 opening is proposed to be mediated by α-adrenergic receptors to potentiate sympathetic constriction. This positions pannexin-1 as a putative pharmacological target in blood pressure regulation in humans. The aim was to provide the first translational evidence for a role of pannexin-1 in essential hypertension in humans by use of an advanced invasive mechanistic approach. METHODS: Middle-aged stage-1 hypertensive (n=13; 135.7±6.4 over 83.7±3.7 mm Hg) and normotensive men (n=12; 117.3±5.7 over 72.2±3.5 mm Hg) were included. Blood pressure and leg vascular resistance were determined during femoral arterial infusion of tyramine (α-adrenergic receptor stimulation), sodium nitroprusside, and acetylcholine. Measurements were made during control conditions and with pannexin-1 blockade (3000 mg probenecid). Expression of Pannexin-1, purinergic- and α-adrenergic receptors in skeletal muscle biopsies was determined by Western blot. RESULTS: The changes in leg vascular resistance in response to tyramine (+289% versus +222%), sodium nitroprusside (-82% versus -78%) and acetylcholine (-40% versus -44%) infusion were not different between the 2 groups (P>0.05) and pannexin-1 blockade did not alter these variables (P>0.05). Expression of pannexin-1 and of purinergic- and α-adrenergic receptors was not different between the 2 groups (P>0.05). CONCLUSIONS: Contrary to our hypothesis, the data demonstrate that pannexin-1 does not contribute to the elevated blood pressure in essential hypertension, a finding, which also opposes that reported in preclinical models.


Asunto(s)
Acetilcolina , Hipertensión , Acetilcolina/farmacología , Conexinas , Hipertensión Esencial , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso , Nitroprusiato/farmacología , Receptores Adrenérgicos alfa/fisiología , Tiramina/farmacología
14.
J Physiol Biochem ; 78(2): 543-556, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35066863

RESUMEN

Among the dietary amines present in foods and beverages, tyramine has been widely studied since its excessive ingestion can cause catecholamine release and hypertensive crisis. However, tyramine exerts other actions than depleting nerve endings: it activates subtypes of trace amine associated receptors (TAARs) and is oxidized by monoamine oxidases (MAO). Although we have recently described that tyramine is antilipolytic in human adipocytes, no clear evidence has been reported about its effects on glucose transport in the same cell model, while tyramine mimics various insulin-like effects in rodent fat cells, such as activation of glucose transport, lipogenesis, and adipogenesis. Our aim was therefore to characterize the effects of tyramine on glucose transport in human adipocytes. The uptake of the non-metabolizable analogue 2-deoxyglucose (2-DG) was explored in adipocytes from human subcutaneous abdominal adipose tissue obtained from women undergoing reconstructive surgery. Human insulin used as reference agent multiplied by three times the basal 2-DG uptake. Tyramine was ineffective from 0.01 to 10 µM and stimulatory at 100 µM-1 mM, without reaching the maximal effect of insulin. This partial insulin-like effect was not improved by vanadium and was impaired by MAO-A and MAO-B inhibitors. Contrarily to benzylamine, mainly oxidized by semicarbazide-sensitive amine oxidase (SSAO), tyramine activation of glucose transport was not inhibited by semicarbazide. Tyramine effect was not dependent on the Gi-coupled receptor activation but was impaired by antioxidants and reproduced by hydrogen peroxide. In all, the oxidation of high doses of tyramine, already reported to inhibit lipolysis in human fat cells, also partially mimic another effect of insulin in these cells, the glucose uptake activation. Thus, other MAO substrates are potentially able to modulate carbohydrate metabolism.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Tiramina , Adipocitos/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Monoaminooxidasa/metabolismo , Tiramina/farmacología
15.
Gastroenterology ; 162(1): 150-165, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34536451

RESUMEN

BACKGROUND & AIMS: G protein-coupled receptor (GPR) 120 has been implicated in regulating metabolic syndromes with anti-inflammatory function. However, the role of GPR120 in intestinal inflammation is unknown. Here, we investigated whether and how GPR120 regulates CD4+ T cell function to inhibit colitis development. METHODS: Dextran sodium sulfate (DSS)-induced colitis model, Citrobacter rodentium infection model, and CD4+ T cell adoptive transfer model were used to analyze the role of GPR120 in regulating colitis development. The effect of GPR120 on CD4+ T cell functions was analyzed by RNA sequencing, flow cytometry, and Seahorse metabolic assays. Mice were administered GPR120 agonist for investigating the potential of GPR120 agonist in preventing and treating colitis. RESULTS: Deficiency of GPR120 in CD4+ T cells resulted in more severe colitis in mice upon dextran sodium sulfate insult and enteric infection. Transfer of GPR120-deficient CD4+CD45Rbhi T cells induced more severe colitis in Rag-/- mice with lower intestinal interleukin (IL) 10+CD4+ T cells. Treatment with the GPR120 agonist CpdA promoted CD4+ T cell production of IL10 by up-regulating Blimp1 and enhancing glycolysis, which was regulated by mTOR. GPR120 agonist-treated wild-type, but not IL10-deficient and Blimp1-deficient, T helper 1 cells induced less severe colitis. Furthermore, oral administration of GPR120 agonist protected mice from intestinal inflammation in both prevention and treatment schemes. Gpr120 expression was positively correlated with Il10 expression in the human colonic mucosa, including patients with inflammatory bowel diseases. CONCLUSIONS: Our findings show the role of GPR120 in regulating intestinal CD4+ T cell production of IL10 to inhibit colitis development, which identifies GPR120 as a potential therapeutic target for treating inflammatory bowel diseases.


Asunto(s)
Acetatos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Colitis/prevención & control , Colon/efectos de los fármacos , Interleucina-10/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Tiramina/análogos & derivados , Traslado Adoptivo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/trasplante , Estudios de Casos y Controles , Colitis/inmunología , Colitis/metabolismo , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Colon/inmunología , Colon/metabolismo , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Modelos Animales de Enfermedad , Glucólisis/efectos de los fármacos , Interleucina-10/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Tiramina/farmacología
16.
Int J Neuropsychopharmacol ; 25(4): 283-292, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-34958348

RESUMEN

BACKGROUND: Venlafaxine is a dual serotonin (5-HT) and norepinephrine reuptake inhibitor. The specific dose at which it begins to efficiently engage the norepinephrine transporter (NET) remained to be determined. Paroxetine is generally considered as a selective 5-HT reuptake inhibitor but exhibits some affinity for NET. Atomoxetine is a NET inhibitor but also has some affinity for the 5-HT reuptake transporter (SERT). METHODS: This study examined the effects of forced titration of venlafaxine from 75 to 300 mg/d, paroxetine from 20 to 50 mg/d, or atomoxetine from 25 to 80 mg/d in 32 patients with major depressive disorder. Inhibition of SERT was estimated using the depletion of whole-blood 5-HT. Inhibition of NET was assessed using the attenuation of the systolic blood pressure produced by i.v. injections of tyramine. RESULTS: All 3 medications significantly reduced 5-HT levels at the initiating regimens: venlafaxine and paroxetine by approximately 60% and atomoxetine by 16%. The 3 subsequent regimens of venlafaxine and paroxetine reduced 5-HT levels by over 90%, but the highest dose of atomoxetine only reached a 40% inhibition. Atomoxetine dose dependently inhibited the tyramine pressor response from the lowest dose, venlafaxine from 225 mg/d, and paroxetine left it unaltered throughout. CONCLUSION: These results confirm that venlafaxine and paroxetine are potent SERT inhibitors over their usual therapeutic range but that venlafaxine starts inhibiting NET only at 225 mg/d, whereas paroxetine remains selective for SERT up to 50 mg/d. Atomoxetine dose dependently inhibits NET from a low dose but does not inhibit SERT to a clinically relevant degree.


Asunto(s)
Antidepresivos de Segunda Generación , Trastorno Depresivo Mayor , Antidepresivos de Segunda Generación/farmacología , Antidepresivos de Segunda Generación/uso terapéutico , Clorhidrato de Atomoxetina/farmacología , Ciclohexanoles/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos , Norepinefrina , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Paroxetina/farmacología , Paroxetina/uso terapéutico , Serotonina , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Tiramina/farmacología , Clorhidrato de Venlafaxina/farmacología , Clorhidrato de Venlafaxina/uso terapéutico
17.
Mar Drugs ; 19(10)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34677432

RESUMEN

Aphrocallistes vastus lectin (AVL) is a C-type marine lectin produced by sponges. Our previous study demonstrated that genes encoding AVL enhanced the cytotoxic effect of oncolytic vaccinia virus (oncoVV) in a variety of cancer cells. In this study, the inhibitory effect of oncoVV-AVL on Hela S3 cervical cancer cells, a cell line with spheroidizing ability, was explored. The results showed that oncoVV-AVL could inhibit Hela S3 cells growth both in vivo and in vitro. Further investigation revealed that AVL increased the virus replication, promote the expression of OASL protein and stimulated the activation of Raf in Hela S3 cells. This study may provide insight into a novel way for the utilization of lection AVL.


Asunto(s)
Adenina/análogos & derivados , Antineoplásicos/farmacología , Lectinas/farmacología , Virus Oncolíticos/patogenicidad , Poríferos , Tiramina/análogos & derivados , Virus Vaccinia/patogenicidad , Adenina/química , Adenina/farmacología , Adenina/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Organismos Acuáticos , Proliferación Celular/efectos de los fármacos , Femenino , Células HeLa/efectos de los fármacos , Humanos , Lectinas/química , Lectinas/uso terapéutico , Tiramina/química , Tiramina/farmacología , Tiramina/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico
18.
Mol Cell Biochem ; 476(12): 4471-4485, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34491525

RESUMEN

Glucocorticoids (GCs) regulate astrocyte function, while glutamine synthetase (GS), an enzyme highly expressed in astrocytes, is one of the most remarkable GCs-induced genes. GCs mediate their effects through their cognate glucocorticoid receptor (GRα and GRß isoforms); however, the mechanism via which these isoforms regulate GS activity in astrocytes remains unknown. We used dexamethasone (DEX), a classical GRα/GRß agonist, RU486, which is a specific GRß ligand, and Compound A, a known "dissociated" ligand, to delineate the mechanism via which GR modulates GS activity. Aged Mouse Cerebral Hemisphere astrocytes were treated with DEX (1 µM), RU486 (1 nM-1 µM) or compound A (10 µM), alone or in combination with DEX. GS activity and expression, GR isoforms (mRNA and protein levels), and GRα subcellular trafficking were measured. DEX increased GS activity in parallel with GRα nuclear translocation. RU486 increased GS activity in absence of GRα nuclear translocation implicating thus a role of GRß-mediated mechanism compound A had no effect on GS activity implicating a GRα-GRE-mediated mechanism. None of the compounds affected whole-cell GRα protein content. DEX reduced GRα and GRß mRNA levels, while RU486 increased GRß gene expression. We provide evidence that GS activity, in astrocytes, is regulated via GRα- and GRß-mediated pathways with important implications in pathological conditions in which astrocytes are involved.


Asunto(s)
Astrocitos/metabolismo , Cerebro/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Acetatos/farmacología , Factores de Edad , Animales , Antiinflamatorios/farmacología , Antiinflamatorios no Esteroideos/farmacología , Astrocitos/efectos de los fármacos , Células Cultivadas , Cerebro/efectos de los fármacos , Cerebro/patología , Dexametasona/farmacología , Antagonistas de Hormonas/farmacología , Ratones , Mifepristona/farmacología , Tiramina/análogos & derivados , Tiramina/farmacología
19.
Biomolecules ; 11(9)2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34572588

RESUMEN

The biogenic amines octopamine and tyramine are important neurotransmitters in insects and other protostomes. They play a pivotal role in the sensory responses, learning and memory and social organisation of honeybees. Generally, octopamine and tyramine are believed to fulfil similar roles as their deuterostome counterparts epinephrine and norepinephrine. In some cases opposing functions of both amines have been observed. In this study, we examined the functions of tyramine and octopamine in honeybee responses to light. As a first step, electroretinography was used to analyse the effect of both amines on sensory sensitivity at the photoreceptor level. Here, the maximum receptor response was increased by octopamine and decreased by tyramine. As a second step, phototaxis experiments were performed to quantify the behavioural responses to light following treatment with either amine. Octopamine increased the walking speed towards different light sources while tyramine decreased it. This was independent of locomotor activity. Our results indicate that tyramine and octopamine act as functional opposites in processing responses to light.


Asunto(s)
Abejas/fisiología , Octopamina/farmacología , Tiramina/farmacología , Visión Ocular/fisiología , Animales , Abejas/efectos de los fármacos , Electrorretinografía , Conducta Alimentaria/efectos de los fármacos , Fototaxis/efectos de los fármacos , Estadística como Asunto , Visión Ocular/efectos de los fármacos
20.
J Nat Prod ; 84(9): 2447-2453, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34460260

RESUMEN

In Alzheimer's disease (AD) the accumulation of amyloid ß (Aß) plaques in the brain leads to neuroinflammation, neuronal cell dysfunction, and progressive memory loss. Therefore, blocking the formation of Aß plaques has emerged as one of the most promising strategies to develop AD treatments. Hempseed is widely used as a food, and recently its compounds have shown beneficial effects on neuroinflammation. The objective of this study was to investigate whether a fraction rich in phenyl amide compounds, N-trans-caffeoyltyramine (CAFT) and N-trans-coumaroyltyramine (CUMT), can affect gene expression: ß-site amyloid-precursor-protein-cleaving enzyme 1 (BACE 1), peroxisome proliferator-activated receptor gamma (PPAR γ), and PPARγ-coactivator-1α (PGC-1α) in N2a-APP cells. The mRNA levels were measured using RT-qPCR. The ethyl acetate fraction and CAFT were found to reduce BACE1 gene expression and are promissory PPARγ and PGC-1α natural agonists. The results show that hempseed compounds can inhibit the expression of BACE 1, which is involved in the accumulation of Aß plaques and positively affect transcription factors involved in complex and diverse biological functions.


Asunto(s)
Amidas/farmacología , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Cannabis/química , PPAR gamma , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Línea Celular , Expresión Génica/efectos de los fármacos , Ratones , Estructura Molecular , Fitoquímicos/farmacología , Semillas/química , España , Tiramina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...